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Preface

This semi-annual report describes our progress during the

period from September 1990 to February 1991. Two specific tasks

are described and each should be read independently. That is, figure

and reference numbering is consecutive only within the description

of the task. As can be expected the progress reports are very brief

and the reader should refer to the referenced technical reports for

detailed coverage. A total of 23 journal articles, 17 conference

publications and 18 technical reports have been written since the

beginning of the Grant. A complete list of these is given in pp. 40-

45.
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ABSTRACT

Validated results are presented for the new 3D body of revolution finite element-

boundary integral code. As usual, a Fourier Series expansion of the vector electric and

magnetic fields is employed to reduce the dimensionality of the system and the exact

boundary condition is employed to terminate the finite element mesh. The mesh

termination boundary is chosen such that it leads to convolutional boundary operators for

low O(n) memory demand. Improvements of this code are discussed along with the

proposed formulation for a full 3D implementation of the f'mite element-boundary integral

method in conjunction with a CGFFT solution.

OBJECTIVE

The objective of this task is to develop innovative techniques and related software

for scattering by three dimensional composite structures. The proposed analysis is a hybrid

finite element-boundary integral method formulated to have an O(n) memory demand. This

low storage is achieved by employing the FFT to evaluate all boundary integrals and by

resorting to an iterative solution algorithm. Particular emphasis in this task is the

generation of software applicable to airborne vehicles and the validation of these by

comparison with measured and other reference data. Because the approach is new, a step

by step development procedure has been proposed over a three-year period. During the

first year the technique was developed and implemented for two-dimensional composite

structures. Support software for the two-dimensional analysis such as pre- and post-

processor routines were developed during the second year and a formulation was also

developed and implemented for three-dimensional bodies of revolution. Finally, during the

third year, we will develop, implement, and test the method for arbitrary three dimensional

structures.



BACKGROUND

Interest in three-dimensional (3-D) methods has increased in recent years, however,

the associated demands in computation time and storage are often prohibitive for electrically

large 3-D bodies. Vector and concurrent (i.e. hypercube, connection, etc.) computers are

beginning to alleviate the fast of these demands, but a minimization of the storage

requirements is essential for treating large structures.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method [1] -

[4] is one such frequency domain solution approach which requires O(n) storage for the

solution on n equations. This method involves the use of FFTs whose dimension equals

that of the structure under consideration [5] - [7] and, therefore, demands excessive

computation time when used in an iterative algorithm. Also, the standard CGFFT requires

uniform rectangular gridding that unnecessarily includes the impenetrable portions of the

scatterer. With these issues in mind, a new solution approach is proposed for solving

scattering problems. The proposed method will be referred to as the Finite Element-

Conjugate Gradient Fast Fourier Transform (FE-CGFFT) method.

During last year's effort the FE-CGFFT method was developed for two-

dimensional scatterers where the finite element mesh was terminated at a rectangular box.

Inside the box boundaries, Helmholtz equation is solved via the finite element method and

the boundary constraint is obtained by an appropriate integral equation which implicitly

satisfies the radiation condition. Along the parallel sides of the box, this integral becomes a

convolution and is, therefore, amenable to evaluation via the FFT. The dimension of the

required FFT in this hybrid method is one less than the dimensionality of the structure thus,

making it attractive for 3-D simulations. Also, because it incorporates the finite element

method, the FE-CGFFT formulation remains valid regardless of the structure's geometry

and material composition.

The proposed method described in the University of Michigan Report 025921-6-T

(see also [8]) is similar to the moment method version developed by Jin [9]. Jin's method

was in turn based on work published in the early 70's by McDonald and Wexler [10] who

introduced an approach to solve unbounded field problems. The proposed method is also

similar to other methods (a few of which will be mentioned here), neither of which

provides a storage reduction comparable to the proposed FE-CGFFT method. The

unimoment method [11] uses finite elements inside a fictitious circular boundary and an

eigenfunction expansion to represent the field in the external region. The coefficients of the

expansion are then determined by enforcing field continuity at the finite element (FE) mesh

boundary. The coupled finite element-boundary element method [12] uses the finite

element method within the boundary and the boundary element method to provide the



additionalconstraintattheterminationof themesh.Unlike theproposedmethod,the

solutionin [12] wasaccomplishedby directmatrix inversion(asin [9]), andtheoutermesh

boundaryis notrectangularto takeadvantageof theFFTfor theevaluationof theboundary

integrals.

P.ILO..C/.I  S 

Part of our efforts in this task were devoted to debugging and validating the three

dimensional body of revolution (BOR) code developed in the previous months. The

analysis associated with this code is described in the U of M technical report 025921-18-T

where we also include validation data obtained over the past two months. Some of these

are shown in figures 1-3 and refer to an ogive, a circular cylinder and a sphere.

Unfortunately, it was found that as the bodies became larger the system's condition

deteriorates and this was traced to the pulse basis formulation employed for the

discretization of the boundary. Through several tests we have now shown that A

Galerkin's linear basis formulation will correct the convergence difficulties. For example,

this formulation was already employed in solving large systems (with more than 120,000

unknowns) associated with the scattering by frequency selective surfaces (FSS) and large

Mates. As shown in figure 4-5, the Galerkin's formulation with linear basis permitted a

solution of this system in less than 70 iterations! In comparison, the pulse basis-point

matching formulation would require several thousand iterations before reaching

convergence. Consequently, we are in the process of incorporating the Galerkin's linear

basis formulation into our existing 21) and 3D BOR codes. Further, it was found that the

ech area converges much sooner than the mean square error and permitted us to speed-up

solution time.

During this last quarter we also began the development of the proposed finite

element formulation for general non-symmetric inhomogeneous bodies. The basic discrete

elements in this case are tetrahedra in conjunction with edge-based expansion functions.

The associated finite element formulations is described in Appendix A and we are now in

the process of implementing it. Initially, the finite element mesh will be terminated by a

fictitious absorbing layer whose dielectric parameters were determined by a minimization of

the reflection coefficient over the entire range of incidence angles. For a three layer

coating, each of thickness 0.05 wavelengths, it was found that their respective dielectric

properties to minimize the reflection coefficient over all angles of incidence are



erl"(-0.1249205, -1.731605),I.tr1=(- 1.031792_-0.1039932)

er2-(0.040699530,0.1750280),I.trI=(0.3155941,0.3190330)

Er3=(-1.278644,0.9625375),Br3"(-0.1721315,-5.389832)

Thecorrespondingplot of thereflectioncoefficientasafunctionof incidenceis givenin

figure7 alongwith scatteringpatternsbasedon theproposedterminationmodel. As seen,
for thechosenfictitiousabsorberthereflectioncoefficientis lessthanonepercentfor 0 up

to 62degreesandlessthan2 percentfor 0 upto 77degrees.For thesameerror criteria,

thecorrespondinganglesassociatedwith thesecondorderPad6ABC are35and41

degrees,respectively.ThefictitiousABC has,therefore,a substantiallybetterperformance
over theexistingABCs,andits effectivenesswill beexaminedfurtherin thenextfew
months.

Thethreedimensionalfiniteelementmeshesrequiredin theanalysiswill be

generatedby SDRCIDEAS andwehavealreadybeganto developthesoftwarefor

transformingtheoutputof thiscommercialpackagetotheinputfilesof our analysiscodes.

Similardriverswerealreadydevelopedfor thetwo dimensionalcodewhichwasdeveloped
lastyear.

Finally,during thisperiodweperformedextensivetestingof thetwo-dimensional

codeandhavein theprogressdevelopedseveralnewpre-andpost-processingalgorithms
for thiscode. Two of thenewgeometries(seefig. 8and 11)whosescatteringwas

computedwith our 2D finite element- CGFFTcodearedisplayedin figures9, 11and 12.

Theserepresentairfoil configurations,oneof whichis coatedwith adielectricmaterial.

CONCLUSIONS

The project continues to evolve in accordance with our original plan and schedule.

Most importantly, so far, our expectation of the finite element CGFFT formulation have

been realized and we are, therefore, pleased with its performance for the intended

applications.

TRANSITIONS

All of our efforts in the next six months will be devoted to the development of the

3D finite element boundary integral code for arbitrary structures. In the immediate future

we will also pursue improvements for our existing codes primarily directed at speeding the

convergence of the CG or BiCG algorithm.
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LARGE PLATE SCATTERING
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case 2: Coated Trailing Edge

-t -+14 1-(x/2"5)2

Yin-__+0.8232 A(x)

A(x) - 4(1-(x/2.7182) 2)
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0_g_x<2.5

- 0.3926
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0.1__x<3.0

elsewhere

B(x) - 5/ l-[(x-. 1)/3.1416] 2 -.3846

_;r=2-j 1 between Yin and Yout

FEM Mesh

Figure 8: Geometry and finite element mesh of the illustrated coated trailing edge
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Perfectly conducting airfoU

All dimensions in wavelengths. The airfoil seetlon k mgde by 5 arcs:

5:ssis
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0 ] 241 0 _ . It5

• OA : .traight line

• AB : cite of radius R2 = 7M and of center 02

• BC : polynomial pazametri¢ equation

• CD : polynomial parametric equation

• DO : circle of radius RI -- 9_ and of center O1

The polynomial equation are given by:

:(,) = y(,) =

Lad k for BC arc ,_ slid I_ for CI) sic

ill ffi 4.61149 ks : 1.,53_8 tit : -1.62131 65 : -0.12,563

q : -12.11403 65 ffi -3.22680 at : 4.54389 65 : 0.30612
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a_ = -0.51440 b_ - 0.4(K)_ e_ - -1.409_ 65 - -0.51216
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Figure 10: Geometry of a PEC Airfoil whose scattering is given in figures 11 & 12.
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Appendix A

Finite element formulation for tetrahedral
elements and edge-based expansion basis

1 Derivation of finite element equations

Let us consider a three dimensional inhomogeneous body occupying the

volume V. In order to discretize the electric field E inside the body, we

subdivide the volume V into a number of small tetrahedra, each occupying

volume V_(e = 1,2,..., M) with M being the total number of tetrahedral

elements. Within each tetrahedron, the electric field satisfies the vector

wave equation

iv =V x x E- ko2e,E 0 (1)
/t,

whcre tt, is the permeability of the medium, e, is the medium permittlvity

and ko is the free space wave number. The next step is to expand the

electric field within V, as

6

E = _ E;W_ (2)
j=l

where W_ are edge-based vector basis functions and E_ denote the

expansion coefficients of the basis, all defined within the volume V_. W_ is

tangential to the jth edge of the eth tetrahedron with zero tangential

component along the other edges of the tetrahedral element. On

substituting (2) into (1), we obtain

E; V× × W_ - koe_W , =0 (3)
j----1 _r

In order to solve for the unknown expansion coefficients E_, we take the dot

product of (3) with W_ and then integrate the resulting equation over the

element volume V. (Galerkin's technique). The wave equation thus reduces
to

2O



E; W_. V x x W; - ko_,W, _v= 0 (4)
j=l #r

The first term in the integral of the above expression can be simplified by

using basic vector identities. Since

[1 ]1w_. v x x w; = v. _(v x w;) x w_ + _(v × w_). (v × w;)

the divergence theorem can be readily applied to (4) resulting in the

following expression:

0 = _E; (V x W_). (V x W;) - koerW,.W j dv
j=l

(5)

where S, denotes the surface enclosing V_. Using vector identities , (5) can

be further simplified to yield the weak form of Maxwell's equation:

° • . . .) I w,'.(n×.),.E E; V x w_). (V x w,)- ko_,w,.wj dv = 3_0
j----1 •

(6)

where n x H is the tangential magnetic field on the exterior dielectric

surface. Equation (6) can be conveniently written in matrix form as

[A'] [E _] = [B'] (7)

where

B_ = 3wPOis W_.(n x H)ds (9)
e

On assembling all the M tetrahedral elements that make up the geometry,

we obtain a system of equations whose solution yields the field components

over the entire body. Therefore, summing over all M elements, we have
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which gives

M M

_-'_[A'][E "] = _-_[B '_] (10)
e=l e=l

[A][E] = [B] (11)

where [A] is a N × N matrix with N being the total number of edges

resulting from the subdivision of the body and [E] is a N x 1 column vector

denoting the edge fields. Due to the continuity of the tangential component

of the magnetic field at the interface between two dielectrics, an element

face lying inside the body does not contribute to [B] since the surface

integrals over the faces of adjacent tetrahedra cancel each other. As a result,

[B] is a column vector containing the tangential magnetic field only over

the exterior surface of the body. Equation (11) can therefore be written as

A88Es+As_EI = Hs

AisE8 + A,E_ = 0 (12)

where the subscript s denotes the edges on the surface and i represents the

edges inside the body. It is thus readily seen that (11) relates the electric

field inside and on the surface of the body to the on-surface tangential

magnetic field.

2 Basis functions

Vector fields within tetrahedral domains in three dimensional space can be

conveniently represented by expansion functions that are linear in the

spatial variables and have either zero divergence or zero curl. The basis

functions defined below are associated with the six edges of the tetrahedron

and have zero divergence and constant curl. Assuming the four nodes and

the six edges of a tetrahedron are numbered according to Table 1, the

vector basis functions associated with the (7 - i)th edge of the tetrahedron
are defined as

'-i + g_-i x r, r in the tetrahedronWT-i = O, otherwise (13)

where i = 1,2,..., 6 and f and g are constant vectors. On direct

evaluation, it is readily seen that
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V.W_ = 0

V x W_ = 2gi

(14)

(15)

Since the complex scalar E_ in (2) is the projection of the electric field

onto the jth edge of the tetrahedral element,

W/'ejlr on jth edge = _ij (16)

where 5ij is the Kronecker delta. Solving (13) and (16) for the unknown

vectors yield[l]

b7-i

f7-1 = -_-ri, × r 6

bibr-lei
gr-i -- 6V

(17)

(18)

where V is the volume of the tetrahedral element, ei = (ri2 - ril)/bi is the

unit vector of the ith edge and bi = Iri2 - ri, I is the length of the ith edge.

All distances are measured with respect to the origin.

Since there are two numbering systems, local and global, a unique global

direction is defined (e.g., always pointing from the smaller node number to

the larger node number) to ensure the continuity of n × E across all edges.

This implies that (13) should be multiplied by (-1) if the local edge vector

(as defined in Table 1) does not have the same direction as the global edge

direction. Even though Wi forces no conditions on the normal component

of E, it has been shown[2] that the continuity of electric flux can be satisfied

within the degree of approximation with the above formulation. Finally,

since V. Wi = 0 the electric field obtained through (2) exactly satisfies the

divergence equation within the element, i.e.V. E = 0. Therefore, the finite

element solution is free from contamination of spurious solutions[2].

3 Mesh termination

Differential equation methods, such as finite elements, can only solve

boundary value problems. Since electromagnetic problems are open

boundary-infinite domain types, a means to truncate the solution domain

to lie within a finite boundary must be found. On this boundary, a

condition is enforced thus ensuring that the fields will obey the Sommerfeld
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radiation condition at distancesasymptotically far from the object. These
absorbingboundary conditions (ABCs) havea significant advantageover
the global methodsof solvingunboundedproblemsusing finite elementsin
that they are local in nature. Due to this, the sparsematrix structure of
the finite element formulation is retained. Onedisadvantage,however,is
that ABCs areapproximate and do not model the exterior field exactly.
The objective of absorbingboundary conditions is to truncate the finite
elementmeshwith boundary conditions that causeminimum reflectionsof
an outgoing wave. TheseABCs shouldprovide small, acceptableerrors
while minimising the distancefrom the object of interest to the outer
boundary. This minimal distanceis required to reducethe number of
unknownsin the problemfor computational efficiency.A three dimensional
vector boundary condition will be investigatedherefor terminating the
finite elementmeshof the body describedin section 1.1. We begin with the
Wilcox representation[3]of the electric field which hasan expansion

E(r)- e-ik* ¢__ An(0,¢) (19)
r n=O rn

From (19), we get

( 1+D1} e-Jk" °° hA.,VxE= jk_x_ E _ (20)
r r 2 r n

n--1

where A,_t = r_ x A, is the transverse component of A,_ and, for a vector F,

D1F is given by

OlF  [f0 ino (sinOF*) ]

1 [OF" ] [F° OF" ¢ (21)+s-_nO [ O0 sinOF¢ _ + O0

Using the recursion relation

-2jknAnt = n(n - 1)A,_-l,t + DaAn-a

where
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=
2 0A___ 1 o 2cosO OA_Do A,_

s_n_O A" sin20 O0Ou

2 OA_ 1 4, 2cosOOA_

De A,_ - sinO 0¢ s_"_ A" + sin20 0¢

and D is Beltrami's operator[3], we can derive the representation correct to

r -4. Applying the recursion relation in (20) yields the desired relationship
for the vector ABC:

where

V x E = a(r)E+/3(r)D4E (22)

c_(r) = jk{oD._r (l+j_r) _x } (23)

1 1

/3(r) = 2jkr 2 (1 + 1/jkr) (24)

The ABC formulated above is applicable to spherical boundaries and hence

would be storage intensive and numerically inefficient when used to

terminate the mesh of long and thin geometries. It would be highly

desirable to choose an outer boundary that conforms to the shape of the

object. An approximate boundary condition based on the asymptotic

representation of fields for a two dimensional scalar problem has already

been derived[4]. It is the author's intention to extend the derivation of the

two dimensional scalar boundary condition to a three dimensional vector

absorbing boundary condition for an arbitrary outer boundary.

4 Solution of the finite element equations

An inspection of (11) reveals that for an inhomogeneous body, there is no

a priori information about the tangential magnetic field over the exterior

surface of the body. Relation (11) therefore contains two unknown vectors,

[E] and [B], and thus another condition is required involving the two

variables to permit an evaluation of the fields inside and on the surface of

the body. This condition relating the tangential electric field to the

tangential magnetic field on the surface is provided by (22). Since the

ABC in (22) refers to the scattered field, we can rewrite it as
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V x E: = c_(r)E: + 19(r)D4E:

H: - j [c_(r)E: +/3(r)m4E_]
w#

= (25)

where/C = _ [c_(r) + fl(r)D4] and the subscript s denotes the field on the
surface and the superscript s represents the scattered field. Since the total

field is a sum of the incident field and the scattered field, therefore from

( 25), we obtain

H: = KE:

Hs-H_ c = K_(Es-E_ "c) (26)

Substituting (26) into (12) and simplifying gives

(As8- K;)E8 + A,iEi = H'2 _- ,'CE_ '_

Ai,E, + A,Ei = 0 (27)

The above equation can thus be solved for the unknown electric fields both

inside and on the surface of the body.

5 References for Appendix A

1. M.L. Barton and Z.J. Cendes, "New vector finite elements for

three-dimensional magnetic field computation", J. Appl. Phys., vol.61, no.8,

pp.3919-21, April 1987.

2. X. Yuan, "On the use of divergenceless basis functions in finite

elements", submitted to Electron. Lett.

3. C.H. Wilcox, "An expansion theorem for electromagnetic fields",

Comm. Pure Appl. Math., vol. 9, pp. 115-134, May 1956.

4. A. Khebir, O.M. Ramahi and R. Mittra, "An efficient partial

differential equation method to solve complex shape scatterers", to appear.
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ABSTRACT

Rigorous UTD (uniform Geometrical Theory of Diffraction) diffraction coefficients

are presented for a coated convex cylinder simulated with generalized impedance boundary

conditions. In particular, ray solutions are obtained which remain valid in the transition

region and reduce uniformly to those in the deep lit and shadow regions. These involve

new transition functions in place of the usual Fock-type integrals, characteristic to the

impedance cylinder. A uniform asymptotic solution is also presented for observations in

the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex

cylinder are obtained via a generalization of the corresponding ones for the circular

cylinder.

OBJECTIVE

This task involves the use of higher order boundary conditions to generate new

solutions in diffraction theory. In particular, diffraction coefficients will be developed for

dielectric/magnetic layers and metal-dielectric junctions which are often encountered on

airborne vehicles as terminations of coatings and conformal antennas. Solutions for both

polarizations will be developed for fairly thick junctions and versatile computer codes will

be written and tested. Creeping wave diffraction coefficients will be also developed for

multilayered coated cylinders.
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PROGRESS

1. Introduction

The problem of scattering by a smooth convex impedance cylinder has received

much attention. Wang [1, 2] presented ray-optical solutions for the impedance and coated

cylinders. His results are valid only in the deep lit and shadow regions and do not apply to

the case where the observation point is in the transition region. Wait and Conda [3, 4]

developed a solution which is valid in the transition region and for observation points on

and off the surface. However, as pointed out by Pathak [5] it did not uniformly reduce to

the ray solution [6, 7] exterior to the transition regions. Also, it is not valid on the portion

of the surface in the transition region and these limitations were the primary motivation in

Pathak's work [5] for the perfectly conducting convex cylinder. Recently, Kim and Wang

[8] presented a solution applicable to a coated cylinder that remained valid in the transition

region. They employed a heuristic approach to obtain the numerical values of the resulting

transition integral applicable to a coated cylinder. Their solution is uniform but is not

applicable to the close vicinity of the cylinder.

Here we develop a rigorous UTD solution of the diffraction by a coated cylinder

simulated with generalized impedance boundary conditions. In addition, a uniform

asymptotic solution is obtained which remains valid when the observation point is in close

vicinity of the cylinder. An important aspect of the paper is also the use of second order

generalized impedance boundary conditions (GIBC) for the simulation of the coating.

Their derivation has already been given in [9] and [10] and are characterized by the

inclusion of higher order field derivatives in their definition. Because of this they are less

local which leads to an improved simulation (with respect to the standard impedance

boundary condition - SIBC) of the coating in a manner analogous to the order of the

highest derivative kept in the condition. Recently, they were successfully applied to a

number of diffraction problems [11], [12] and have also been used in numerical

simulations of multilayer coatings (see fig. 1) [13]. These applications provided a measure

of the accuracy of the proposed GIBC and in particular accuracy criteria were derived in

[13] for the second order conditions as a function of coating thickness and composition.

The UTD solution to be presented here parallels that given by Pathak [5] for the

circular perfectly conducting cylinder. However, in the case of the coated cylinder the

resulting UTD expressions are in terms of Fock-type integrals whose efficient evaluation is

of primary interest. In the following we first present the eigenfunction solution based on
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the secondorder GIBC simulation of a circular coated cylinder. By employing Watson's

transformation this is written in integral form which is then cast in a ray representation.

They ray solution is subsequently generalized to the case of a general convex cylinder.

Finally, the evaluation of the Fock-type integrals is discussed and some results are

presented which validate the accuracy of the GIBC eigenfunction and ray solutions. In the

process, we demonstrate the improved accuracy of the GIBC solution over the

corresponding SIBC solution, and it is also shown how the presented UTD solution can be

extended to treat multilayered coated cylinders.

The details of the analysis are described in the report 025921-13-T which was

recently submitted to the sponsor. Below we only attach a few results which demonstrate

the accuracy and utility of the derived formulae.

2. Numerical Results

The UTD expressions derived in the UM report 025921-17-T provide a complete

set of equations for the computation of the total field in all regions of interest. Below, we

present some calculated data which validate the accuracy of the derived expressions by

comparison with data based on the moment method and eigenfunction solutions.

In figure 2 the eigenfunction solutions based on the GIBC and SIBC simulations

are compared with the exact for a coated cylinder and this clearly demonstrates the

improved simulation (with respect to the standard impedance boundary conditions - SIBC)

achieved with the second order GIBC. To show the validity of the UTD solution in the

case of the convex cylinder, a special case of an elliptical cylinder is considered in figure 3.

Data based on the moment method are compared with those obtained from the UTD

solution in conjunction with the second order low and high contrast boundary conditions.

Figure 4 verifies the asymptotic solution developed for the field point in the close

vicinity of a convex cylinder. We remark, however, that the approximations used for the

Hankel functions in the derivation of (42) and (43) become less accurate for some values of

Er and ].tr associated with lossless coatings, and this can be avoided by using more accurate

approximations for the Hankel functions. Finally, figure 5 demonstrates the use of GIBC

in simulating multilayer coatings by simply redefining the material constants am and am' as

discussed in [10, 13].

A difficulty in implementing the expressions derived in this paper was the

evaluation of the Fock-type integrals G(x,q), gl (D) and g2(D) as well as determination of

the zeros corresponding to (21). The Fock-type integrals were evaluated by employing the
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methoddescribedin [16] andthezerosof (21)weredeterminedusingtheroutinegivenin

[20].

Summary

Rigorous ray solutions of the scattered fields were presented for a coated convex

cylinder. These were developed in the context of the uniform geometrical theory of

diffraction and specific expressions were given for the scattered fields in the lit, shadow

and transition regions as well as for observations in the near vicinity of the cylinder. That

is, UTD expressions were derived for all regions exterior to the coated cylinder. These are

suited for engineering computations and are given in terms of the generalized Pekeris or

Fock-type functions whose evaluation was efficiently performed via the Fourier

Trapezoidal rule suggested by Pearson [16].

In comparison to the solution given by Kim and Wang [8], the ray representations

given here are based on a second order generalized impedance boundary condition which

permits the simulation of thin multilayered coating as demonstrated in the included

examples. Also, in our implementation of the transition fields we employed a rigorous

rather than a heuristic evaluation of the Fock-type integrals. Further, we have presented

accurate field representations for observations on or near the vicinity of the coated cylinder

and these can also be used for computing the radiated fields by a source or an aperture on

the surface of the convex cylinder.
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